Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae.

Identifieur interne : 002134 ( Main/Exploration ); précédent : 002133; suivant : 002135

RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae.

Auteurs : Senthil Subramanian [États-Unis] ; Madge Y. Graham ; Oliver Yu ; Terrence L. Graham

Source :

RBID : pubmed:15778457

Descripteurs français

English descriptors

Abstract

Isoflavones are thought to play diverse roles in plant-microbe interactions and are also potentially important to human nutrition and medicine. Isoflavone synthase (IFS) is a key enzyme for the formation of the isoflavones. Here, we examined the consequences of RNAi silencing of genes for this enzyme in soybean (Glycine max). Soybean cotyledon tissues were transformed with Agrobacterium rhizogenes carrying an RNAi silencing construct designed to silence expression of both copies of IFS genes. Approximately 50% of emerging roots were transformed with the RNAi construct, and most transformed roots exhibited >95% silencing of isoflavone accumulation. Silencing of IFS was also demonstrated throughout the entire cotyledon (in tissues distal to the transformation site) both by high-performance liquid chromatography analysis of isoflavones and by real-time reverse transcription-PCR. This distal silencing led to a nearly complete suppression of mRNA accumulation for both the IFS1 and IFS2 genes and of isoflavone accumulations induced by wounding or treatment with the cell wall glucan elicitor from Phytophthora sojae. Preformed isoflavone conjugates were not reduced in distal tissues, suggesting little turnover of these stored isoflavone pools. Distal silencing was established within just 5 d of transformation and was highly efficient for a 3- to 4-d period, after which it was no longer apparent in most experiments. Silencing of IFS was effective in at least two genotypes and led to enhanced susceptibility to P. sojae, disrupting both R gene-mediated resistance in roots and nonrace-specific resistance in cotyledon tissues. The soybean cotyledon system, already a model system for defense signal-response and cell-to-cell signaling, may provide a convenient and effective system for functional analysis of plant genes through gene silencing.

DOI: 10.1104/pp.104.057257
PubMed: 15778457
PubMed Central: PMC1088325


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae.</title>
<author>
<name sortKey="Subramanian, Senthil" sort="Subramanian, Senthil" uniqKey="Subramanian S" first="Senthil" last="Subramanian">Senthil Subramanian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Donald Danforth Plant Science Center, St. Louis, Missouri 63132</wicri:regionArea>
<wicri:noRegion>Missouri 63132</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Graham, Madge Y" sort="Graham, Madge Y" uniqKey="Graham M" first="Madge Y" last="Graham">Madge Y. Graham</name>
</author>
<author>
<name sortKey="Yu, Oliver" sort="Yu, Oliver" uniqKey="Yu O" first="Oliver" last="Yu">Oliver Yu</name>
</author>
<author>
<name sortKey="Graham, Terrence L" sort="Graham, Terrence L" uniqKey="Graham T" first="Terrence L" last="Graham">Terrence L. Graham</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15778457</idno>
<idno type="pmid">15778457</idno>
<idno type="doi">10.1104/pp.104.057257</idno>
<idno type="pmc">PMC1088325</idno>
<idno type="wicri:Area/Main/Corpus">002285</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002285</idno>
<idno type="wicri:Area/Main/Curation">002285</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002285</idno>
<idno type="wicri:Area/Main/Exploration">002285</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae.</title>
<author>
<name sortKey="Subramanian, Senthil" sort="Subramanian, Senthil" uniqKey="Subramanian S" first="Senthil" last="Subramanian">Senthil Subramanian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Donald Danforth Plant Science Center, St. Louis, Missouri 63132</wicri:regionArea>
<wicri:noRegion>Missouri 63132</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Graham, Madge Y" sort="Graham, Madge Y" uniqKey="Graham M" first="Madge Y" last="Graham">Madge Y. Graham</name>
</author>
<author>
<name sortKey="Yu, Oliver" sort="Yu, Oliver" uniqKey="Yu O" first="Oliver" last="Yu">Oliver Yu</name>
</author>
<author>
<name sortKey="Graham, Terrence L" sort="Graham, Terrence L" uniqKey="Graham T" first="Terrence L" last="Graham">Terrence L. Graham</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Gene Silencing (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genes, Reporter (MeSH)</term>
<term>Glucuronidase (genetics)</term>
<term>Oxygenases (genetics)</term>
<term>Phytophthora (pathogenicity)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Roots (enzymology)</term>
<term>Plant Roots (microbiology)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>RNA Interference (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>RNA, Plant (genetics)</term>
<term>RNA, Plant (metabolism)</term>
<term>Rhizobium (genetics)</term>
<term>Soybeans (enzymology)</term>
<term>Soybeans (genetics)</term>
<term>Transformation, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>ARN des plantes (génétique)</term>
<term>ARN des plantes (métabolisme)</term>
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Extinction de l'expression des gènes (MeSH)</term>
<term>Glucuronidase (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Gènes rapporteurs (MeSH)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Oxygénases (génétique)</term>
<term>Phytophthora (pathogénicité)</term>
<term>Racines de plante (enzymologie)</term>
<term>Racines de plante (microbiologie)</term>
<term>Rhizobium (génétique)</term>
<term>Soja (enzymologie)</term>
<term>Soja (génétique)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
<term>Glucuronidase</term>
<term>Oxygenases</term>
<term>RNA, Messenger</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Racines de plante</term>
<term>Soja</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plant Roots</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Rhizobium</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>ARN des plantes</term>
<term>ARN messager</term>
<term>Glucuronidase</term>
<term>Oxygénases</term>
<term>Rhizobium</term>
<term>Soja</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Messenger</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN des plantes</term>
<term>ARN messager</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Gene Silencing</term>
<term>Genes, Plant</term>
<term>Genes, Reporter</term>
<term>Plants, Genetically Modified</term>
<term>RNA Interference</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Extinction de l'expression des gènes</term>
<term>Gènes de plante</term>
<term>Gènes rapporteurs</term>
<term>Interférence par ARN</term>
<term>Séquence nucléotidique</term>
<term>Transformation génétique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Isoflavones are thought to play diverse roles in plant-microbe interactions and are also potentially important to human nutrition and medicine. Isoflavone synthase (IFS) is a key enzyme for the formation of the isoflavones. Here, we examined the consequences of RNAi silencing of genes for this enzyme in soybean (Glycine max). Soybean cotyledon tissues were transformed with Agrobacterium rhizogenes carrying an RNAi silencing construct designed to silence expression of both copies of IFS genes. Approximately 50% of emerging roots were transformed with the RNAi construct, and most transformed roots exhibited >95% silencing of isoflavone accumulation. Silencing of IFS was also demonstrated throughout the entire cotyledon (in tissues distal to the transformation site) both by high-performance liquid chromatography analysis of isoflavones and by real-time reverse transcription-PCR. This distal silencing led to a nearly complete suppression of mRNA accumulation for both the IFS1 and IFS2 genes and of isoflavone accumulations induced by wounding or treatment with the cell wall glucan elicitor from Phytophthora sojae. Preformed isoflavone conjugates were not reduced in distal tissues, suggesting little turnover of these stored isoflavone pools. Distal silencing was established within just 5 d of transformation and was highly efficient for a 3- to 4-d period, after which it was no longer apparent in most experiments. Silencing of IFS was effective in at least two genotypes and led to enhanced susceptibility to P. sojae, disrupting both R gene-mediated resistance in roots and nonrace-specific resistance in cotyledon tissues. The soybean cotyledon system, already a model system for defense signal-response and cell-to-cell signaling, may provide a convenient and effective system for functional analysis of plant genes through gene silencing.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15778457</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>06</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>137</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2005</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae.</ArticleTitle>
<Pagination>
<MedlinePgn>1345-53</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Isoflavones are thought to play diverse roles in plant-microbe interactions and are also potentially important to human nutrition and medicine. Isoflavone synthase (IFS) is a key enzyme for the formation of the isoflavones. Here, we examined the consequences of RNAi silencing of genes for this enzyme in soybean (Glycine max). Soybean cotyledon tissues were transformed with Agrobacterium rhizogenes carrying an RNAi silencing construct designed to silence expression of both copies of IFS genes. Approximately 50% of emerging roots were transformed with the RNAi construct, and most transformed roots exhibited >95% silencing of isoflavone accumulation. Silencing of IFS was also demonstrated throughout the entire cotyledon (in tissues distal to the transformation site) both by high-performance liquid chromatography analysis of isoflavones and by real-time reverse transcription-PCR. This distal silencing led to a nearly complete suppression of mRNA accumulation for both the IFS1 and IFS2 genes and of isoflavone accumulations induced by wounding or treatment with the cell wall glucan elicitor from Phytophthora sojae. Preformed isoflavone conjugates were not reduced in distal tissues, suggesting little turnover of these stored isoflavone pools. Distal silencing was established within just 5 d of transformation and was highly efficient for a 3- to 4-d period, after which it was no longer apparent in most experiments. Silencing of IFS was effective in at least two genotypes and led to enhanced susceptibility to P. sojae, disrupting both R gene-mediated resistance in roots and nonrace-specific resistance in cotyledon tissues. The soybean cotyledon system, already a model system for defense signal-response and cell-to-cell signaling, may provide a convenient and effective system for functional analysis of plant genes through gene silencing.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Subramanian</LastName>
<ForeName>Senthil</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Graham</LastName>
<ForeName>Madge Y</ForeName>
<Initials>MY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Graham</LastName>
<ForeName>Terrence L</ForeName>
<Initials>TL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>03</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.-</RegistryNumber>
<NameOfSubstance UI="D010105">Oxygenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.13.-</RegistryNumber>
<NameOfSubstance UI="C048489">isoflavone synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.31</RegistryNumber>
<NameOfSubstance UI="D005966">Glucuronidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005966" MajorTopicYN="N">Glucuronidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010105" MajorTopicYN="N">Oxygenases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15778457</ArticleId>
<ArticleId IdType="pii">pp.104.057257</ArticleId>
<ArticleId IdType="doi">10.1104/pp.104.057257</ArticleId>
<ArticleId IdType="pmc">PMC1088325</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 1990 Mar;14(3):433-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2102823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Nov;121(3):821-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10557230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Jan;210(2):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10664125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1976 May;57(5):760-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Feb;95(2):584-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Apr;110(4):1123-1133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Sep;27(6):581-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11576441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytother Res. 2003 Sep;17(8):845-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13680814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Mar;54(5):623-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1999 Jul 1;367(1):146-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10375412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):878-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Dec;58(7):995-1005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11730862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 1996;16(1):1-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8935908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Feb;18(2):208-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10657130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Oct 9;389(6651):553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Maturitas. 2004 Jan 20;47(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14706760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Apr;65(8):995-1016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15110680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Feb;95(2):594-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Oct;124(2):781-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):1979-2000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Graham, Madge Y" sort="Graham, Madge Y" uniqKey="Graham M" first="Madge Y" last="Graham">Madge Y. Graham</name>
<name sortKey="Graham, Terrence L" sort="Graham, Terrence L" uniqKey="Graham T" first="Terrence L" last="Graham">Terrence L. Graham</name>
<name sortKey="Yu, Oliver" sort="Yu, Oliver" uniqKey="Yu O" first="Oliver" last="Yu">Oliver Yu</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Subramanian, Senthil" sort="Subramanian, Senthil" uniqKey="Subramanian S" first="Senthil" last="Subramanian">Senthil Subramanian</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002134 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002134 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15778457
   |texte=   RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15778457" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024